

BAULKHAM HILLS HIGH SCHOOL

TRIAL 2013 YEAR 12 TASK 4

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

Total marks – 70 Exam consists of 10 pages.

This paper consists of TWO sections.

Section 1 – Page 2-4 (10 marks) Questions 1-10

• Attempt Question 1-10

Section II – Pages 5-9 (60 marks)

• Attempt questions 11-14

Table of Standard Integrals is on page 10

Sec Use	Section I - 10 marks Use the multiple choice answer sheet for question 1-10		
1.	The value of $\lim_{x \to 0} \frac{\sin 7x}{3x}$ is (A) $2\frac{1}{3}$ (B) $\frac{3}{7}$ (C) 0 (D) 1		
2.	What is the acute angle, to the nearest degree, between the lines y = 7 - 4x and $2x - 3y - 6 = 0$. (A) 26° (B) 48° (C) 70° (D) 75°		
3.	Let α , β and γ be the roots of $2x^3 + x^2 - 4x + 9 = 0$. What is the value of $\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$ (A) $-\frac{1}{9}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{9}$ (D) $\frac{1}{2}$		

Section II – Extended Response

Attempt questions 11-16. Answer each question on a SEPARATE PAGE. Clearly indicate question number. Each piece of paper must show your number. All necessary working should be shown in every question.

Question 11 (15 marks)		
a)	Solve for x $\frac{2x+1}{1-x} \ge 1$	3
b)	It is given that $y = 2 \cos 3 \left(x - \frac{\pi}{3}\right), 0 \le x \le 2\pi$ Find (i) the amplitude. (ii) the period.	1 1
c)	Not to scale C C B B A B	1
d)	The graph of $y = 1 + 2 \sin^{-1}(2x - 1)$ is shown.	2
	Determine the values of <i>a</i> , <i>b</i> , and <i>c</i>	
e)	Form the cartesian equation by eliminating the parameter, θ , from these parametric equations. $x = 3 \tan \theta$ $y = 2 \sec \theta$	2
f)	Solve $\sin 2\theta + \cos \theta = 0$ for $0 \le \theta \le 2\pi$.	3
g)	The radius of a spherical balloon is increasing at the rate of 2cm/sec. Find the rate at which the volume of the balloon is increasing when the radius is 10cm (in terms of π).	2
	End of Question 11	

Question 12 (15 marks)		Marks		
a)	Evaluate $\int_0^{\frac{\pi}{6}} 2\sin^2 x dx$	2		
b)	By using the substitution $u = \sqrt{x}$, evaluate $\int_{1}^{4} \frac{dx}{x + \sqrt{x}}$	3		
c)	Two parallel tangents to a circle, centre <i>O</i> , are cut by a third tangent at <i>P</i> and <i>Q</i> . P Not to scale (i) Copy or trace the diagram into your solution booklet.			
	(ii) Prove $\Delta MOQ \equiv \Delta SOQ$	2		
	(iii) Prove that $\angle POQ = 90^{\circ}$.	2		
d)	(i) Express $x = 2\cos 3t - 5\sin 3t$ in the form $x = R\cos(3t + \alpha)$, where <i>t</i> is in radians.	2		
	(ii) A particle moves in a straight line and its position at time t is given by $x = 2\cos 3t - 5\sin 3t$. Show that the particle is moving in simple harmonic motion.	1		
e)	The coefficients of x^2 and x^{-1} in the expansion of $\left(ax - \frac{b}{x^2}\right)^5$ are the same. Show that $a + 2b = 0$, where a and b are positive integers.	3		
	End of Question 12			
6				

Que	Question 13 (15 marks)			
a)	In how many ways can a committee of 5 people be formed from a group of 9 people, Harry and Archie, refuse to serve together on the same committee.	eople, if 2 2		
b)	(i) Show by a sketch, without using calculus, that the equation $e^{2x} + 4x$ has only one root.	x-5=0 1		
	(ii) Show that this root lies between 0 and 1.	1		
	(iii) By taking $x = 0.5$ as a first approximation, use one application of Ne method to find a better approximation of this root to two decimal p	ewton's 2 laces.		
c)	A particle moves in a straight line with velocity v m/sec and acceleration g $\ddot{x} = 2e^x$, where x is the displacement from 0 . The initial velocity is -2 m/sec at the origin.	iven by		
	(i) Prove that $v^2 = 4e^x$.	2		
	(ii) Hence find the displacement in terms of <i>t</i> .	3		
d)	d) When a body falls, the rate of change of its velocity, <i>v</i> , is given by $\frac{dv}{dt} = -k(v-5t)$ where <i>k</i> is a constant.			
	(i) Show that $v = 500 - 500e^{-kt}$ is a possible solution to this equation	n. 1		
	 (ii) The velocity after 5 seconds is 21m/sec , find the value of k to 3 signifigures. 	nificant 1		
	(iii) Find the velocity after 20 seconds.	1		
	(iv) Explain the effect on the velocity as <i>t</i> becomes large.	1		
	End of Question 13			

End of Exam

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \ln(x + \sqrt{x^{2} - a^{2}}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}})$$

$$\text{NOTE: } \ln x = \log_{e} x, \ x > 0$$

$$\begin{array}{c} \underline{A}_{vlexiton | 1} \\ \hline a_{vlexiton | 1} \\ \hline$$

Quest 12 Cont
When example
Similar to (W)
$$\Delta MOP \equiv \Delta ROP (R.H.S)$$

let $MOP \equiv y$
 $= ROP (matching Ls in congruent \Delta S)$
and let $RPO = z$
 $= mPO (matching Ls in congruent \Delta S)$
Since tangent PQ meets RP and SQ (parallel tangents)
 $RPQ + SQm = 180 (coin krier Ls, PR||QS)$
 $\therefore 2x + 2y = 180$
 $x + y = 90 - - 0$
 $now POm = 90 - x (L sum of ΔPOM)
 $QOM = 90 - x (L sum of ΔPOM)
 $QOM = 90 - x (Ho - y) (addition of adjacent LS)$
 $then POQ = 90 - x + 90 - y (addition of adjacent LS)$
 $r = 180 - (24y)$
 y in eeded to
 $r = 90^{\circ}$ as required.
 $r = 90^{\circ}$ as required.
 $r = 90^{\circ}$ as required.
 $r = R coo 2t - 5 \sin 2t$
 $x = R coo 2t - 5 \sin 2t$
 $x = R coo 2t - 5 \sin 2t$
 $x = R coo 2t - 5 \sin 2t$
 $x = R coo 2t - 5 \sin 2t$
 $x = R coo (2t + 1/19)$ for $Var cos (3t + tan TS)$
 $r = 120 - (2t + 1/19)$ for $Var cos (3t + tan TS)$
 $r = 120 - (2t + 1/19)$ for $Var cos (3t + tan TS)$$$

$$\frac{auestion 12 \text{ Cont}}{d(\mu)} = \sqrt{2a} \cos(3t + 1.19)$$

$$\frac{1}{2} = -3\sqrt{2a} \sin(3t + 1.19)$$

$$\frac{1}{2} = -9\sqrt{2a} \cos(3t + 1.19)$$

$$\frac{1}{2} = -9\sqrt{2a} \cos(3t + 1.19)$$

$$\sqrt{12} = -9\sqrt{2a} \cos(3t + 1.19)$$

$$\sqrt$$

~ Q14 - page 3 ~ $LHS_{,} = \frac{1}{4} K^{2} (K+1)^{2} + (K+1)^{3}$ $= (k+1)^{2} (K^{2} + 4 (k+1))$ $V_{2} = \frac{1}{4} (k+1)^{2} (k+2)^{2}$ = RHS ... If true for n=k now proved true for n=k+1 Since true for n=1 now true for n=1+1=2 n=3 and so on by the principles of M. I for all n. (3) Marks - correct 3 marks - one error OMark - 2 errors. $\frac{v}{y} = z^3 + z$ h-=(+)3++ intro $Area = n \times \left(\frac{1}{n^3} + \frac{1}{n}\right)$ Nidth = h 2nd strip $h = \left(\frac{2}{n}\right)^3 + \frac{2}{n}$ last strip $h = \left(\frac{n-1}{n}\right)^s + \frac{n-1}{n}$ $=\frac{1}{n}\left(\left(\frac{1}{n}\right)^{3}+\frac{2}{n}\right) \qquad A = \frac{1}{n}\times\left(\frac{(n-1)}{n}\right)^{3}+\frac{n-1}{n}$ working towards An. . Total Area $A_n = \frac{1}{n} \times \left(\frac{1}{n^3} + \frac{1}{n}\right) + \left(\frac{2}{n}\right)^3 + \frac{2}{n} + \left(\frac{3}{n}\right)^3 + \frac{3}{n}$ $+ \cdots + \left(\left(\frac{n-1}{n} \right)^3 + \frac{n-1}{n} \right)$.', two parts $A_n = \frac{1}{n} \sum (\overline{n})^3 + \frac{1}{n} \sum \overline{n} \sqrt{splitting}$ $=\frac{1}{n^{4}}\sum_{r=1}^{n-1} (r)^{3} + \frac{1}{n^{2}}\sum_{r=1}^{n-1} (r)^{n-1} + \frac{1}{n^{2}$ Area = $\lim_{n \to \infty} A_n$ and $\sum_{r=1}^{\infty} r^3 = \frac{1}{4} (n)^2 (n+1)^2 from (i)$ $A_n = \frac{n^2 (n+i)^2}{4 n^4 i + n^2} \leq n$

~ O14 - page 4 ~

now 5 r is a series (AP) $r = 1 + 2 + 3 + \cdot \cdot + n - 1$ $\therefore S_n = \frac{1}{2}(a + l)$ $=\frac{n-1}{2}(1+n-1)$ $= \frac{(n-t)}{2}(n)$ $A_n = \frac{n^2(n+1)}{4n^4} + \frac{1}{n^2} \times \frac{(n-1)}{2} n$ $= \frac{1}{4} \cdot \frac{(n+1)}{2} + \frac{1}{2} \cdot \frac{(n^2 - n)}{2}$ $\lim_{n \to \infty} A_n = \lim_{n \to \infty} \left(\frac{1}{4} \left(1 - \frac{2}{n} + \frac{1}{n^2} \right) + \frac{1}{2} \left(1 - \frac{1}{n} \right) \right)$ $= \frac{1}{4} + \frac{1}{2}$ as $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} +$ * needed to show working that achieves & and 1.